Inverse Rational L¹ Approximation

R. C. GAYLE

Department of Science and Mathematics, Montana State University-Northern, P.O. Box 7751, Havre, Montana 59501

Communicated by Doron S. Lubinsky

Received December 6, 1993; accepted in revised form April 4, 1995

We consider the nonlinear approximating family \mathbb{R}_m^n of rational expressions over a real interval. In the L^p norms, 1 non-normal elements of this family $cannot arise as best approximations to functions outside the family. In the <math>L^1$ case, Dunham (1971) has shown that for a continuous function no rational of defect two or greater, excepting the rather special case of the function 0, can be a best approximation. Cheney and Goldstein have shown (1967) that any normal rational function can arise as the best approximation to some function $f \in L^2$ which is not in the rational family. We show here that there exist continuous functions not in \mathbb{R}_m^n which do have any given defect one functions as their best approximations by using variational techniques from Wolfe (1976). $-e^{-\frac{1}{2}}$ 1995 Academic Press. Inc.

In what follows we consider approximation questions involving the family $R_m^n[a, b]$ of rational functions over a given real interval [a, b], the precise definition of which will follow. $R_m^n[a, b]$ is a nonlinear approximating family. We concern ourselves with the inverse existence question. That is, we ask which elements of $R_m^n[a, b]$ may arise as best approximations to continuous functions from outside the family? Recall that a function $r_0 \in R_m^n[a, b]$ is said to be normal, or nondegenerate, if given any representation $r_0 = p/q$, either deg p = n or deg q = m, where deg(\cdot) is the degree of a polynomial. The collection of all normal, rational functions (drawn from $R_m^n[a, b]$) we denote by $\mathcal{N}_m^n[a, b]$ or just $\mathcal{N}[a, b]$ when the context is clear. If r_0 is not normal we define the defect of r_0 by

 $def r_0 = \min\{n - \deg p, m - \deg q\}.$

By A we mean the natural parametrization of the family $R_m^n[a, b]$, A: $\mathbb{R}^{n+m+1} \mapsto \mathscr{A}[a, b]$, where $\mathscr{A}[a, b]$ denotes the real analytic functions over the interval [a, b]. If $A(\mathbf{x}_0) = r_0$ is normal, then it is well known that the map A is a local homeomorphism of a neighborhood of $\mathbf{x}_0 \in \mathbb{R}^{n+m+1}$ with a neighborhood of $r_0 \in R_m^n[a, b]$ irrespective of which L^p norm we impose on $R_m^n[a, b]$.

84

0021-9045/95 \$12.00 Copyright (1) 1995 by Academic Press, Inc. All rights of reproduction in any form reserved. The natural parametrization A has the following properties:

(i) For any $\mathbf{x}, \mathbf{y} \in S$, $A(\mathbf{x}) - A(\mathbf{y})$ has at most n + m zeros (on any interval whatsoever).

(ii) If a sequence of parameters $\mathbf{x}_l \to \mathbf{x}_0$, then $(d^s/dt^s) A(\mathbf{x}_l) \to (d^s/dt^s) A(\mathbf{x}_0)$ uniformly on [a, b] for s = 0, 1, ...

The following lemma is instrumental in showing that each normal element of the rational family R_m^n is a best approximation to some continuous function outside the family.

LEMMA 1. Suppose $f \in C^1[a, b]$, $A: S \subset \mathbb{R}^N \mapsto \mathcal{A}[a, b]$, and $A(\mathbf{x}_0)(t) - f(t)$ has simple zeros at a, b and K many other points, say $\{t_j: j = 1, ..., K\}$, in the interior of [a, b], where A has properties (i) and (ii) as above. For each $\mathbf{x} \in S$ define $F(\mathbf{x})$ by

$$F(\mathbf{x}) = \int_a^b |f(t) - A(\mathbf{x})(t)| dt.$$

Then, for any **h** in \mathbb{R}^N ,

$$F''_{+}(\mathbf{x}, \mathbf{h}, \mathbf{h}) = \lim_{\lambda \to 0^{+}} \frac{F'(\mathbf{x} + \lambda \mathbf{h}, \mathbf{h}) - F'(\mathbf{x}, \mathbf{h})}{\lambda}$$

and

$$F''_{-}(\mathbf{x}, \mathbf{h}, \mathbf{h}) = \lim_{\lambda \to 0^{-}} \frac{F'(\mathbf{x} + \lambda \mathbf{h}, \mathbf{h}) - F'(\mathbf{x}, \mathbf{h})}{\lambda},$$

both exist and have the form

$$2\sum_{j=1}^{K} \frac{\left[A'(\mathbf{x},\mathbf{h})(t_j)\right]^2}{\left|\left(d\varepsilon/dt\right)(t_j)\right|} + \int_a^b sgn\varepsilon(t) A''(\mathbf{x},\mathbf{h},\mathbf{h})(t) dt + P,$$

where $\varepsilon(t) = f(t) - A(\mathbf{x})(t)$ and $F(x) = \int_a^b |A(\mathbf{x})(t) - f(t)| dt$, $\mathscr{A}[a, b]$ denotes the collection of real analytic functions on [a, b], and $P = [A'(\mathbf{x}, \mathbf{h})(\omega)]^2/|(d\varepsilon/dt)(\omega)|$ or zero with $\omega = a$ or b.

Proof. The proof is exactly as the proof of Theorem 1 in Wolfe [10] save for the consideration of the endpoints of the interval. The behavior of the derivative quotient at the interior points gives rise to the terms

$$2\sum_{j=1}^{K} \frac{[A'(\mathbf{x}, \mathbf{h})(t_j)]^2}{|(d\varepsilon/dt)(t_j)|}.$$

R. C. GAYLE

Hence we consider what happens at the endpoints. By virtue of our assumptions concerning A and f, for each λ sufficiently small, there are simple zeros, $t_0(\lambda)$ and $t_{K+1}(\lambda)$ of $\varepsilon(\lambda, t) = A(\mathbf{x} + \lambda \mathbf{h})(t) - f(t)$ which are continuously differentiable functions of λ and are, for sufficiently small λ , as close to a and b, respectively, as we desire. Moreover, neither $\varepsilon(\lambda, t)$ nor $\varepsilon(t) = \varepsilon(0, t)$ has any zeros on the intervals connecting a to $t_0(\lambda)$ or b to $t_{K+1}(\lambda)$. Here we have used the Implicit Function Theorem applied to $\varepsilon(\lambda, t)$ and the fact that f is continuously differentiable on an open interval containing [a, b]. In fact, by Taylor's Theorem, we have

$$t_0(\lambda) = a + \frac{dt_0}{d\lambda}\Big|_{\lambda=0} \lambda + o(\lambda)$$

and

$$t_{K+1}(\lambda) = a + \frac{dt_{K+1}}{d\lambda}\Big|_{\lambda=0} \lambda + o(\lambda)$$

for each λ sufficiently small. Application of the Implicit Function Theorem to $\varepsilon(\lambda, t)$ shows also that

$$\left. \frac{dt_0}{d\lambda} \right|_{\lambda=0} = \frac{-A'(\mathbf{x}, \mathbf{h})}{(d\varepsilon/dt)(a)}$$

and

$$\left.\frac{dt_{K+1}}{d\lambda}\right|_{\lambda=0} = \frac{-A'(\mathbf{x},\mathbf{h})}{(d\varepsilon/dt)(a)}.$$

Therefore the order relation between a and $t_0(\lambda)$ is completely governed by the sign of λ with a similar remark applying at the right-hand endpoint. Let us consider what happens near t = a. In the difference quotient above which defines $F''_+(\mathbf{x}, \mathbf{h}, \mathbf{h})$ the term

$$\int_{a}^{t_{0}(\lambda)} \frac{\operatorname{sgn} \varepsilon(\lambda, t) - \operatorname{sgn} \varepsilon(t)}{\lambda} A'(\mathbf{x}, \mathbf{h})(t) dt$$

is involved precisely when $t_0(\lambda) > a$, which is to say precisely, provided λ is small enough, when

$$\frac{-A'(\mathbf{x},\mathbf{h})}{(d\varepsilon/dt)(a)} > 0 \tag{(†)}$$

since $\lambda > 0$. If this last inequality holds, then the term

$$\lim_{\lambda \to 0^+} \int_a^{t_0(\lambda)} \frac{\operatorname{sgn} \varepsilon(\lambda, t) - \operatorname{sgn} \varepsilon(t)}{\lambda} A'(\mathbf{x}, \mathbf{h})(t) dt$$

arises in the calculation of $F''_+(\mathbf{x}, \mathbf{h}, \mathbf{h})$; otherwise it does not. Suppose it appears. Then $t_0(\lambda) > a$ and $\operatorname{sgn} \varepsilon(\lambda, t)$ and $\operatorname{sgn} \varepsilon(0, t)$ are constant on the interval $(a, t_0(\lambda))$. Suppose $\varepsilon(0, t) > 0$ there. Then, by the simplicity of the roots of $\varepsilon(0, t)$, $(d\varepsilon(0, t)/dt)|_{t=a} > 0$. Hence, using the second assumption concerning the parameter map A, for λ near enough to 0, $(d\varepsilon(\lambda, t)/dt)|_{t=t_0(\lambda)} > 0$ also. Hence

$$\operatorname{sgn} \varepsilon(\lambda, t) - \operatorname{sgn} \varepsilon(0, t) = -2$$

on $(a, t_0(\lambda))$. Similarly if $\varepsilon(0, t) < 0$,

$$\operatorname{sgn} \varepsilon(\lambda, t) - \operatorname{sgn} \varepsilon(0, t) = 2$$

on $(a, t_0(\lambda))$. Thus

$$\lim_{\delta \to 0^+} \int_a^{t_0(\lambda)} \frac{\operatorname{sgn} \varepsilon(\lambda, t) - \operatorname{sgn} \varepsilon(t)}{\lambda} A'(\mathbf{x}, \mathbf{h})(t) dt$$
$$= \pm \frac{2}{\lambda} \int_a^{t_0(\lambda)} A'(\mathbf{x}, \mathbf{h})(t) dt$$
$$= \pm 2A'(\mathbf{x}, \mathbf{h})(t) \frac{-A'(\mathbf{x}, \mathbf{h})}{(d\varepsilon/dt)(a)}.$$

Noting that the sign of ± 2 is opposite that of $(d\varepsilon/dt)_{t=a}$, we see that this is just

$$2\frac{\left[\frac{A'(\mathbf{x},\mathbf{h})(t_j)\right]^2}{|(d\varepsilon/dt)(a)|}.$$

If, on the other hand, the opposite inequality prevails in (\dagger) , this same term arises not in $F''_+(\mathbf{x}, \mathbf{h}, \mathbf{h})$ but rather in $F''_-(\mathbf{x}, \mathbf{h}, \mathbf{h})$ by the linearity of these expressions in \mathbf{h} . Similar arguments hold at the righthand endpoint.

LEMMA 2. Suppose $f \in C^1[a, b]$ and A satisfies the hypotheses of Lemma 1. Assume further that A is a local homeomorphism in a neighborhood of \mathbf{x}_0 , that, with F and ε as in Lemma 1,

$$F'(\mathbf{x}_0, \mathbf{h}) = \int_a^b \operatorname{sgn} \varepsilon(t) \ A'(\mathbf{x}_0, \mathbf{h})(t) \ dt = 0$$

for all $\mathbf{h} \in \mathbb{R}^{n+m+1}$ and that there exists an $\eta > 0$ so that

$$F''_{+}(\mathbf{x}_0, \mathbf{h}, \mathbf{h}) > \eta$$
 and $F''_{-}(\mathbf{x}_0, \mathbf{h}, \mathbf{h}) > \eta$

for all $\mathbf{h} \in \mathbb{R}^{n+m+1}$ so that $\|\mathbf{h}\| = 1$. Then $A(\mathbf{x}_0)$ is a local best approximation to f from A(S) in L^1 norm.

Proof. The hypotheses concerning the sign of the one-sided derivatives $F''_+(\mathbf{x}_0, \mathbf{h}, \mathbf{h})$ and $F''_-(\mathbf{x}_0, \mathbf{h}, \mathbf{h})$ together with the compactness of the unit sphere imply that there exists a $\lambda_0 > 0$ so that, for all $\lambda < \lambda_0$ and all $\|\mathbf{h}\| = 1$,

$$F(\mathbf{x}_0 + \lambda \mathbf{h}) - F(\mathbf{x}_0) > 0.$$

This in conjunction with the fact that A is a local homeomorphism near \mathbf{x}_0 yields the result.

We are now in a position to state and prove the following theorem.

THEOREM 1. Suppose $r_0 \in \mathcal{N}[a, b]$. Then there exists a function $f \in \mathcal{A}[a, b], f \notin \mathbb{R}^n_m[a, b]$, so that f has r_0 as its best approximation from $\mathbb{R}^n_m[a, b]$ in $L^1[a, b]$ and f interpolates r_0 at a and b.

Proof. Let $a < t_1 < t_2 < \cdots < t_{n+m+1}$, b be the L^1 canonical points of the n+m+1-dimensional Haar space tangent to $R_m^n[a, b]$ at r_0 . Let $w(t) = \prod_{j=0}^{n+m+2} t - t_j$, where $t_0 = a$ and $t_{n+m+2} = b$. Taking

$$f = r_0 + w$$
 and $f_{\lambda} = \lambda f + (1 - \lambda)r_0$.

 r_0 is a critical point to each of the functions f_{λ} from $R_m^n[a, b]$ for $\lambda \in (0, 1)$. Note $f_{\lambda} \in \mathcal{A}[a, b]$. If we let

$$F_{\lambda}(\mathbf{x}) = \int_{a}^{b} |f_{\lambda}(t) - A(\mathbf{x})(t)|, dt$$

then, applying Lemma 1, we find that

$$F_{\lambda,+}''(\mathbf{x}, \mathbf{h}, \mathbf{h}) = \frac{2}{\lambda} \sum_{j=1}^{n+m+1} \frac{\left[A'(\mathbf{x}, \mathbf{h})(t_j)\right]^2}{\left|(d\varepsilon/dt)(t_j)\right|} + \int_a^b sgn\varepsilon(t) A''(\mathbf{x}, \mathbf{h}, \mathbf{h})(t), dt$$

+ a nonnegative term

and

$$F_{\lambda,-}''(\mathbf{x},\mathbf{h},\mathbf{h}) = \frac{2}{\lambda} \sum_{j=1}^{n+m+1} \frac{\left[A'(\mathbf{x},\mathbf{h})(t_j)\right]^2}{\left|(d\varepsilon/dt)(t_j)\right|} + \int_a^b sgn\varepsilon(t) A''(\mathbf{x},\mathbf{h},\mathbf{h})(t), dt$$

+ a nonnegative term,

where $\mathbf{h} \in \mathbb{R}^{n+m+1}$, $\varepsilon(t) = f(t) - r_0(t)$, and the nonnegative terms are as discussed in Lemma 1. Using the compactness of the unit sphere in \mathbb{R}^{n+m+1} and the continuity of

$$\mathbf{h} \mapsto A''(\mathbf{x}, \mathbf{h}, \mathbf{h})$$

we may select $\eta > 0$ so that

$$F''_{\lambda_{i}+}(\mathbf{x}, \mathbf{h}, \mathbf{h}) > \eta$$
 and $F''_{\lambda_{i}-}(\mathbf{x}, \mathbf{h}, \mathbf{h}) > \eta$

for all suitably small λ . Applying Lemma 2, we see that f_{λ} eventually has r_0 as a local best from $R_m^n[a, b]$. Moving further down the ray connecting f to r_0 we obtain f_{λ} for which r_0 is a global best approximation from $R_m^n[a, b]$.

To extend this result to the case of defect one functions will require the following lemma.

LEMMA 3. Suppose $r_0 \in R_m^n[a, b]$ and $def(r_0) = 1$. Then, given any $\gamma \in [a, b]$, there is a neighborhood U of r_0 in $L^1[a, b] \cap R_m^n[a, b]$ and a real number d > 0, so that if $r \in U$ the poles of r are further than d from (α, β) .

Proof. Suppose the lemma fails. Then there is a sequence, $r_j = p_j/q_j$, which has poles at β_j so that $\beta_j \rightarrow \gamma \in (-1, 1)$ and $r_j \rightarrow r_0$. Since γ is interior to [-1, 1] and r_j cannot have any poles on the interval [-1, 1], we may assume that each β_j is a non-real complex number. Since q_j has real coefficients and no zeros on [-1, 1] it must be the case that both β_j and $\overline{\beta}_j$ are roots of q_j hence that $q_j(t) = \tilde{q}_j(t)(t^2 - |\beta_j|^2)$, where $\tilde{q}_j(t)$ is a polynomial with real coefficients of degree at most m-2. Since r_j converges to r_0 , it is bounded in norm. Hence we must be able to find distinct complex roots α_j and $\overline{\alpha_j}$ for p_j so that $\alpha_j \rightarrow \gamma$. So we may write $p_j(t) = \tilde{p}_j(t)(t^2 - |\alpha_j|^2)$, where $\tilde{p}_j(t)$ is a real polynomial of degree at most n-2. Normalizing q_j so that $||q_j||_{\infty} = 1$ and passing if necessary to a subsequence, we may assume that p_j and q_j converge uniformly to p_0 and q_0 , respectively, where $r_0 = p_0/q_0([2])$. Hence we have

$$\frac{p_0(t)}{q_0(t)} = \frac{p^*(t)(t^2 - \gamma^2)}{q^*(t)(t^2 - \gamma^2)}$$
$$= \frac{p^*(t)}{q^*(t)} \in R_{m-2}^{n-2}[-1, 1],$$

where $\tilde{p}_j(t) \rightarrow p^*(t)$ and $\tilde{q}_j(t) \rightarrow q^*(t)$ uniformly on [-1, 1]. This contradicts our assumption concerning the defect of r_0 and so no such sequence of poles may exist.

With this lemma available we may now establish the following result:

THEOREM 2. Let $r_0 \in \mathbb{R}^{n-1}_{m-1}[-1, 1]$. Then there is a function $f \in \mathbb{C}[-1, 1] \setminus \mathbb{R}^n_m[-1, 1]$ so that r_0 is a best L^1 approximation to f from $\mathbb{R}^n_m[-1, 1]$.

Proof. For each $\delta \in (0, 1)$ by Theorem 2.1 we may find a function \tilde{f}_{δ} so that r_0 is a best L^1 approximation of \tilde{f}_{δ} from $R_{m-1}^{n-1}[-\delta, \delta]$ and so that $\tilde{f}_{\delta}(-\delta) = r_0(-\delta)$ and $\tilde{f}_{\delta}(\delta) = r_0(\delta)$. Define f_{δ} on [-1, 1] by

$$f_{\delta}(t) = \begin{cases} \tilde{f}_{\delta}(t), & \text{if } t \in [-\delta, \delta]; \\ r_0(t), & \text{if } t \notin [-\delta, \delta]. \end{cases}$$

Then f_{δ} is a continuous function on [-1, 1] and, for each δ , r_0 is a best L^1 approximation to f_{δ} from $R_{m-1}^{n-1}[-1, 1]$ since r_0 is best on $[-\delta, \delta]$ and the two agree on the rest of [-1, 1]. Suppose now that for no $\delta \in (0, 1)$ is r_0 a best L^1 approximation to f_{δ} from $R_m^n[-1, 1]$. Denote by f_k the function $f_{1/k}$ corresponding to the interval [-1/k, 1/k]. We observe that in the construction of f_k we may take the uniform norm of $f_k - r_0$ to be bounded so that $||f_k - r_0||_{1, [-1, 1]} \rightarrow 0$ as $k \rightarrow \infty$. Hence, if r_0 is not best to any of the f_k , there exists a sequence $r_k \in \mathcal{N}_m^n[a, b]$ converging in $L^1[a, b]$ to r_0 so that

$$\int_{-1}^{1} |f_k(t) - r_k(t)| \, dt < \int_{-1}^{1} |f_k(t) - r_0(t)| \, dt \qquad \text{for each } k,$$

which is equivalent to

$$\int_{-1}^{1} |r_k(t) - r_0(t)| dt + \int_{-1/k}^{1/k} |f_k(t) - r_k(t)| dt$$

$$< \int_{-1/k}^{1/k} |r_0(t) - f_k(t)| dt + \int_{-1/k}^{1/k} |r_0(t) - r_k(t)| dt$$

or

$$\int_{-1}^{1} |r_k(t) - r_0(t)| dt$$

$$< \int_{-1/k}^{1/k} (|r_0(t) - f_k(t)| - |f_k(t) - r_k(t)|) + \int_{-1/k}^{1/k} |r_0(t) - r_k(t)| dt.$$

This in turn implies that

$$\int_{-1}^{1} |r_k(t) - r_0(t)| \, dt < 2 \int_{-1/k}^{1/k} |r_0(t) - r_k(t)| \, dt$$

by the triangle inequality, hence that

$$\frac{1}{2} < \int_{-1/k}^{1/k} \frac{|r_0(t) - r_k(t)|}{\|r_k - r_0\|_1} dt,$$

where the L^1 norm refers to the interval [-1, 1]. Now let

$$\sigma_k = \frac{|r_0(t) - r_k(t)|}{\|r_k - r_0\|_1}.$$

We observe that the poles of the σ_k are precisely those of the r_k together with those of r_0 . All of these together are bounded below in distance from any interior point of [-1, 1], in particular from 0, by Lemma 3. Indeed, by a minor extension, they are bounded away from any interval $[\alpha, \beta]$, which is interior to [-1, 1] from which it follows that we may extract a subsequence of σ_k , which converges uniformly to a rational function σ^* on any such interval, in particular on [-1/2, 1/2], which eventually contains [-1/k, 1/k]. Denoting this subsequence σ_i we then have

$$\frac{2}{k_i} |\sigma_j(\xi_j)| > \frac{1}{2}$$

for each j = 1, 2, ..., where $\xi_j \in [-(1/k_j), (1/k_j)]$. Since $\xi_j \to 0$ and $\sigma_j \to \sigma^*$ uniformly on every sufficiently small neighborhood of 0, we must have that σ^* has a pole at 0. But this is clearly impossible since any pole of σ^* must be a limit of poles of the σ_j all of which are bounded away from 0. Hence such a sequence of r_k cannot exist and the proof is complete.

REFERENCES

- 1. M. BERGER, "Nonlinearity and Functional Analysis," Academic Press, New York, 1977.
- 2. D. BRAESS, "Nonlinear Approximation Theory," Springer-Verlag, Berlin/New York, 1986.
- 3. E. W. CHENEY AND A. A. GOLDSTEIN, Mean square approximation by generalized rational functions, *Math. Zeitschrift* **95** (1967), 232-241.
- 4. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 5. P. J. DAVIS, "Interpolation and Approximation," Blaisdell, New York, 1963.
- 6. C. B. DUNHAM, Degeneracy in mean rational approximation, J. Approx. Theory 4 (1971), 225-229.
- C. B. DUNHAM, Existence of best mean rational approximations, J. Approx. Theory 4 (1971), 269–273.

- 8. R. C. GAYLE, On existence and unicity in nonlinear L^1 approximation, a dissertation, University of Oregon, August 1993.
- 9. B. R. KRIPKE AND T. J. RIVLIN, Approximation in the metric of $L(X, \mu)$, Trans. Amer. Math. Soc. 119 (1965), 101-122.
- 10. J. M. WOLFE, Nonlinear L^1 approximation of smooth functions, J. Approx. Theory 17 (1976), 166–176.