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We consider the nonlinear approximating family R::, of rational expressions over
a real interval. In the L" norms, I < p < W non-normal elements of this family
cannot arise as best approximations to functions outside the family. In the L I case,
Dunham (1971) has shown that for a continuous function no rational of defect two
or greater. excepting the rather special case of the function 0, can be a best
approximation. Cheney and Goldstein have shown ( 1967) that any normal rational
function can arise as the best approximation to some function f E L 2 which is not
in the rational family. We show here that there exist continuous functions not in R~,

which do have any given defect one functions as their best approximations by using
variational techniques from Wolfe (19761. '1995 Academic Prcss. Inc.

In what follows we consider approximation questions involving the
family R:,[ a, b] of rational functions over a given real interval [a, b], the
precise definition of which will follow. R~,[ a, b] is a nonlinear approxi
mating family. We concern ourselves with the inverse existence question,
That is, we ask which elements of R~,[a, b] may arise as best approxima
tions to continuous functions from outside the family? Recall that a
function '0 E R:,[ a, b] is said to be normal, or nondegenerate, if given any
representation,0 = p/q, either deg p = n or deg q = In, where deg( ,) is the
degree of a polynomial. The collection of all normal, rational functions
(drawn from R;:,[a, b]) we denote by .1';:,[a, b] or just .ITa, b] when the
context is clear. If '0 is not normal we define the defect of '0 by

def,o = min{ n -deg p, m - deg q}.

By A we mean the natural parametrization of the family R~,[a, b],
A: IR n +m + I f-+ .w[a, b], where .w[a, b] denotes the real analytic functions
over the interval [a,b]. If A(xo)='o is normal, then it is well known that
the map A is a local homeomorphism of a neighborhood of X oE IR n + '" + 1

with a neighborhood of '0 E R:,[ a, b] irrespective of which LP norm we
impose on R~,[a, b ].
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The natural parametrization A has the following properties:

(i) For any X,yES, A(x)-A(y) has at most n+m zeros (on any
interval whatsoever).

(ii) If a sequence of parameters x/->xo' then (d'/dt')A(x,)->
(d'/dt')A(xo) uniformly on [a,b] for s=O~ \, ....

The following lemma is instrumental in showing that each normal
element of the rational family R;:, is a best approximation to some
continuous function outside the family.

LEMMA 1. Suppose fE CI[a, b], A: Sc IRN~.Cl1[a,h], and A(xo)(t)

f( t) has simple zeros at a, band K many other points, say {t/ j = \, ... , K},
in the interior of [a, h], where A has properties (i) and (ii) as aboue. For
each XES define F( x) by

F(x) =rI.f(t) - A(x)(t)1 dt.
"

Then, for any h in IR N
,

and

F
" h h _ l' F(x + Ah, h) - F'(x, h)
_(x, , ) - 1m ) ,

l_ 0- ~

both exist and have the form

K [A'(x h)(t)y h

2 L I d';d J + f sgne(t)A"(x,h,h)(t)dt+P,
j = I (CI t)( t) I "

where c(t) = f(t) - A(x)(t) and F(x) = J: IA(x)(t) - f(£)/ dt, .Cl1[a, h]
denotes the collection of real analytic functions on [a, b], and P =
[A'(x, h)(w)Y/I(dc/dt)(w)1 or zero with w=a or b.

Proof The proof is exactly as the proof of Theorem I in Wolfe [10]
save for the consideration of the endpoints of the interval. The behavior of
the derivative quotient at the interior points gives rise to the terms

2 K [A'(x, h)(t)y

J~I l(dt:/dtHt,)1
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Hence we consider what happens at the endpoints. By virtue of our
assumptions concerning A and.f, for each Ie sufficiently small, there are
simple zeros, toO.) and tK+1(1e) of D().,t)=A(x+),h)(t)-f(t) which are
continuously differentiable functions of ). and are, for sufficiently small I"~

as close to a and h, respectively, as we desire. Moreover, neither eU, t) nor
£( t) = e( 0, t) has any zeros on the intervals connecting a to to( Ie} or h to
t K + I (Ie). Here we have used the Implicit Function Theorem applied to
e( l, t) and the fact that f is continuously differentiable on an open interval
containing [a, h]. In fact, by Taylor's Theorem, we have

., dtol')to(A}=a+-
d

, A+o(.)
A ).~o

and

for each Ie sufficiently small. Application of the Implicit Function Theorem
to cO., t} shows also that

dtol -A'(x, h)
d) ) ~o = (de/dt)(a)

and

dt K + II -A'(x, h)

~ )~o = (de/dt)(a)'

Therefore the order relation between a and toU) is completely governed by
the sign of l with a similar remark applying at the right-hand endpoint. Let
us consider what happens near t = a. In the difference quotient above which
defines F: (x, h, h) the term

J
.IO!>' ) sgn e(/., t) - sgn e(t)

A A'(x, h}(t) dt
a

is involved precisely when toOL) > a, which is to say precisely, provided ). is
small enough, when

-A'(x, h)
--".-~._..._.. > 0
(de/dt)(a)

(t)
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since Ie > 0. If this last inequality holds, then the term

. f'llill sgn e(i., t) - sgn e(t)
hm . .. A/(x, h)(t) dt
;.-o~ a A.
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arises in the calculation of F: (x, h, h); otherwise it does not. Suppose it .
appears. Then toU) > a and sgn e(1e, t) and sgn e(O, t) are constant on the
interval (a, toU)). Suppose e(O, t) > °there. Then, by the simplicity of the
roots of e( 0, t), (de( 0, t)/dt) I, ~ a> O. Hence, using the second assumption
concerning the parameter map A, for I. near enough to 0, (de(le, t)/dt)II~lll(;1

> °also. Hence

sgn e(A, t) - sgn e(O, t) = -2

on (a, t o( Ie). Similarly if e( 0, t) < 0,

sgn I:( I., t) - sgn e( 0, t) = 2

on (a, toU). Thus

. J. ,llW sgn e(l" t) - sgn e(t)
hm A'(x, h)(t) dt

;.-0+ a ).

2 f'll(;'
= ±~ A1(x,h)(t)dt

)~ • a

, . -A'(x, h)
= ± 2A (x, h)( t) d 'I .

( e/d)(a)

Noting that the sign of ±2 is opposite that of (de/dt),~", we see that this
is just

2 [A'(x, h)(tj)f

I(de,d/)(all

If, on the other hand, the opposite inequality prevails in (t), this same
term arises not in F:(x, h, h) but rather in F"-(x, h, h) by the linearity
of these expressions in h. Similar arguments hold at the righthand
endpoint. I

LEMMA 2. Suppose fEe I [a, b] and A satisfies the hypotheses (j(
Lemma 1. Assume further that A is a local homeomorphism in a neigh
borhood of xo, that, with F and e as in Lemma 1,

.h

F'(xo, h) = I sgn f;(t) A'(xo, h)(t) dt =°
'a
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FJr all hEIR" + m+ I and that there exists an IJ > 0 so that

and

for all hE 1R,,+m+ 1 so that Ilhll = 1. Then A(xo) is a local best approximation
to ffrom A(S) in L 1 norm.

Proof The hypotheses concerning the sign of the one-sided derivatives
F:(x o, h, h) and F~(xo, h, h) together with the compactness of the unit
sphere imply that there exists a ,10> 0 so that, for all ,1< Ao and all Ilhll = I,

F(xo + Ah) - F(x o) > O.

This in conjunction with the fact that A is a local homeomorphism near X o
yields the result. I

We are now in a position to state and prove the following theorem.

THEOREM 1. Suppose ro E .iTa, h]. Then there exists a function
fE.c1[a,hJ,frtR~.[a,hJ,so thatfhas ro as its best approximation from
R;:,[ a, h] in L I [a, h] and f interpolates r0 at a and b.

Prool Let a<t l <t2 < ... <t,,+m+l' h be the L 1 canonical points of
the n+m+l-dimensional Haar space tangent to R~,[a,b] at roo Let
H'(t)=fl;':f>,,+2 t - I ,. where to=a and tn +m+2=b. Taking

f=ro+w and

ro is a critical point to each of the functionsj~. from R~,[a, h] for AE(O, I).
Note j~ E .c1[ a, b]. If we let

FA(x) =r If~.(t) - A(x )(1)1, dt
a

then, applying Lemma I, we find that

2 ,,+m+ 1 [A'(x h)(t)f h

F~.+(x, h, h) =1 L I d'ld .I I + f sgne(t) A"(x, h, h)(t), dt
1'. j~l (e t)(li) a

+ a nonnegative term

and

2,,+m+1 [A'(x h)(t)f h

F~._(x,h,h)=-;- L I lid .I I +f sgne(t)A"(x,h,h)(t),dt
Ie j~ 1 ((e I)(t) a

+ a nonnegative term,
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where hE!R,,+m+l,e(t)=f(t)-ro(t), and the nonnegative terms are as
discussed in Lemma 1. Using the compactness of the unit sphere In

!R" + m + I and the continuity of

h f--> A"(x, h, h)

we may select f/ > 0 so that

and

for all suitably small /.. Applying Lemma 2, we see that.t~ eventually has
1'0 as a local best from R~,[ a, h]. Moving further down the ray connecting
f to 1'0 we obtain I for which 1'0 is a global best approximation from
R;:,[ a, h]. I

To extend this result to the case of defect one functions will require the
following lemma.

LEMMA 3. Suppose l'0 E R~,[ a, bJ and def( l' 0) = 1. Theil, given any
}'E [a, bJ, there is a neighhorhood U of 1'0 in LI[a, hJ n R;:,[a, h] and a real
numher d> 0, so that if l' E U the poles of l' are further than d from (IX, P).

Proof Suppose the lemma fails. Then there is a sequence, 1'; = P)lf;,
which has poles at P; so that p; ....... f'E (-1,1) and 1'; ....... 1'0' Since t' is interior
to [ -I, 1J and rj cannot have any poles on the interval [ - I, I J, we may
assume that each fJj is a non-real complex number. Since qj has real
coefficients and no zeros on [ - 1, 1J it must be the case that both fJj and
Pj are roots of q) hence that q)(t) = (/;(t)( t2

- IP) 1
2

), where (/)(t) is a polyno
mial with real coefficients of degree at most m - 2. Since 1' j converges to 1'0'

it is bounded in norm. Hence we must be able to find' distinct complex
roots IX) and ~ for p) so that IX j ....... y. So we may write p;( t) =

p;(t)( t 2
- I IX; 1

2
), where p)(t) is a real polynomial of degree at most

n - 2. Normalizing qj so that Ilq) Ilf. = I and passing if necessary to a
subsequence, we may assume that Pi and q/ converge uniformly to Po and
qo, respectively, where 1'0 = Po/qo( [2J). Hence we have

Po(t) p*(t)(t2 - 1'2)

qo(t) q*(t)( t2
_ }'2)

=p*(t) R,,-2[-1 IJ
q*(t) E m-2 "

where p)(t) ....... p*(t) and iij(t) ....... q*(t) uniformly on [-1,1]. This
contradicts our assumption concerning the defect of ro and so no such
sequence of poles may exist.
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With this lemma available we may now establish the following result:

THEOREM 2. Let rOE R~,- \ [ - I, I]. Then there is afunctionf E C[ - I, I] \
R;:,[ - I, I] so that r0 is a best L I approximation to fji-om R~,[ -I, I].

Proof For each 15 E (0, I) by Theorem 2.1 we may find a function],5 so
that r0 is a best L 1 approximation of.76 from R;;,~\ [ - 15, 15] and so that
],,( -15) = ro( -15) and ],,(15) = "0(15). Define f, on [ -I, I] by

f '(I) = r1:,(I),
. " ("0(1),

if tE[-t5,t5];

if tH -0, 0].

Then f6 is a continuous function on [ -I, I] and, for each 15, ro is a best
L1 approximation to j;; from R;;,~\ [ -1, 1] since "0 is best on [ -15, 15] and
the two agree on the rest of [ -I, I]. Suppose now that for no 15 E (0, I) is
"0 a best L 1 approximation to f, from R~,[ - L I]. Denote by j~ the func
tion fl/k corresponding to the interval [ -11k, 11k]. We observe that in the
construction of fk we may take the uniform norm ofj~ -"0 to be bounded
so that Ilfk -"0 Ill. [ _I.l] --+ 0 as k ----> CfJ, Hence, if ro is not best to any of the
fk' there exists a sequence "kEA/';;,[a,b] converging in L'[a,b] to ro so
that

for each k,

which is equivalent to

or

-I

j Irk(l) - ro(l)1 dt
-1

This in turn implies that
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by the triangle inequality, hence that

where the C norm refers to the interval [ - I, I].
Now let
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We observe that the poles of the (1k are precisely those of the rk together
with those of roo All of these together are bounded below in distance from
any interior point of [ -1, I], in particular from 0, by Lemma 3. Indeed,
by a minor extension, they are bounded away from any interval [x, {J],
which is interior to [ -I, I] from which it follows that we may extract a
subsequence of Ok' which converges uniformly to a rational function 0* on
any such interval, in particular on [ -1/2, 1/2], which eventually contains
[ - I/k, I/k]. Denoting this subsequence 0, we then have

for each j = I, 2, ... , where ¢j E [ - ( I/k), ( I/k)]. Since ¢j ---+ 0 and OJ -> 0*

uniformly on every sufficiently small neighborhood of 0, we must have that
0* has a pole at O. But this is clearly impossible since any pole of 0* must
be a limit of poles of the 0, all of which are bounded away from O. Hence
such a sequence of rk cannot exist and the proof is complete. I
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