Inverse Rational L ${ }^{1}$ Approximation

R. C. Gayle
Department of Science and Mathematics, Montana State University-Northern, P.O. Box 775I, Hare, Montana 59501
Communicated by Doron S. Lubinsky

Received December 6, 1993; accepted in revised form April 4, 1995

Abstract

We consider the nonlinear approximating family R_{m}^{n} of rational expressions over a real interval. In the L^{p} norms, $1<p<\infty$ non-normal elements of this family cannot arise as best approximations to functions outside the family. In the L^{\prime} case, Dunham (1971) has shown that for a continuous function no rational of defect two or greater, excepting the rather special case of the function 0 , can be a best approximation. Cheney and Goldstein have shown (1967) that any normal rational function can arise as the best approximation to some function $f \in L^{2}$ which is not in the rational family. We show here that there exist continuous functions not in $R_{m}^{\prime \prime}$ which do have any given defect one functions as their best approximations by using variational techniques from Wolle (1976). if 1995 Academic Press. Inc

In what follows we consider approximation questions involving the family $R_{m}^{n}[a, b]$ of rational functions over a given real interval $[a, b]$, the precise definition of which will follow. $R_{m}^{n}[a, b]$ is a nonlinear approximating family. We concern ourselves with the inverse existence question. That is, we ask which elements of $R_{m}^{n}[a, b]$ may arise as best approximations to continuous functions from outside the family? Recall that a function $r_{0} \in R_{m}^{n}[a, b]$ is said to be normal, or nondegenerate, if given any representation $r_{0}=p / q$, either $\operatorname{deg} p=n$ or $\operatorname{deg} q=m$, where $\operatorname{deg}(\cdot)$ is the degree of a polynomial. The collection of all normal, rational functions (drawn from $R_{m}^{n}[a, b]$) we denote by $\mathscr{N}_{m}^{n}[a, b]$ or just $N^{2}[a, b]$ when the context is clear. If r_{0} is not normal we define the defect of r_{0} by

$$
\operatorname{def} r_{0}=\min \{n-\operatorname{deg} p, m-\operatorname{deg} q\}
$$

By A we mean the natural parametrization of the family $R_{m}^{n}[a, b]$, $A: \mathbb{R}^{n+m+1} \mapsto \mathscr{A}[a, b]$, where $\mathscr{A}[a, b]$ denotes the real analytic functions over the interval $[a, b]$. If $A\left(\mathbf{x}_{0}\right)=r_{0}$ is normal, then it is well known that the map A is a local homeomorphism of a neighborhood of $\mathbf{x}_{0} \in \mathbb{R}^{n+m+1}$ with a neighborhood of $r_{0} \in R_{m}^{n}[a, b]$ irrespective of which L^{p} norm we impose on $R_{m}^{n}[a, b]$.

The natural parametrization A has the following properties:
(i) For any $\mathbf{x}, \mathbf{y} \in S, A(\mathbf{x})-A(\mathbf{y})$ has at most $n+m$ zeros (on any interval whatsoever).
(ii) If a sequence of parameters $\mathbf{x}_{l} \rightarrow \mathbf{x}_{0}$, then $\left(d^{*} / d t^{*}\right) A\left(\mathbf{x}_{l}\right) \rightarrow$ ($\left.d^{s} / d t^{s}\right) A\left(\mathbf{x}_{0}\right)$ uniformly on $[a, b]$ for $s=0,1, \ldots$.
The following lemma is instrumental in showing that each normal element of the rational family R_{m}^{n} is a best approximation to some continuous function outside the family.

Lemma 1. Suppose $f \in C^{\prime}[a, b], A: S \subset \mathbb{R}^{N} \mapsto \mathscr{A}[a, b]$, and $A\left(\mathbf{x}_{0}\right)(t)-$ $f(t)$ has simple zeros at a, b and K many other points, say $\left\{t_{j}: j=1, \ldots, K\right\}$. in the interior of $[a, b]$, where A has properties (i) and (ii) as above. For each $\mathbf{x} \in S$ define $F(\mathbf{x})$ by

$$
F(\mathbf{x})=\int_{a}^{b}|f(t)-A(\mathbf{x})(t)| d t
$$

Then, for any \mathbf{h} in \mathbb{R}^{N}.

$$
F_{+}^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})=\lim _{i \rightarrow 0^{+}} \frac{F^{\prime}(\mathbf{x}+\lambda \mathbf{h}, \mathbf{h})-F^{\prime}(\mathbf{x}, \mathbf{h})}{\lambda}
$$

and

$$
F_{-}^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})=\lim _{\lambda \rightarrow 0^{-}} \frac{F^{\prime}(\mathbf{x}+\lambda \mathbf{h}, \mathbf{h})-F^{\prime}(\mathbf{x}, \mathbf{h})}{\lambda}
$$

both exist and have the form

$$
2 \sum_{j=1}^{K} \frac{\left[A^{\prime}(\mathbf{x}, \mathbf{h})\left(t_{j}\right)\right]^{2}}{\|(d \varepsilon / d t)\left(t_{j}\right) \mid}+\int_{a}^{b} \operatorname{sgn\varepsilon }(t) A^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})(t) d t+P
$$

where $\varepsilon(t)=f(t)-A(\mathbf{x})(t)$ and $F(x)=\int_{a}^{b}|A(\mathbf{x})(t)-f(t)| d t, \mathscr{A}[a, b]$ denotes the collection of real analytic functions on $[a, b]$, and $P=$ $\left[A^{\prime}(\mathbf{x}, \mathbf{h})(\omega)\right]^{2} /|(d \varepsilon / d t)(\omega)|$ or zero with $\omega=a$ or b.

Proof. The proof is exactly as the proof of Theorem 1 in Wolfe [10] save for the consideration of the endpoints of the interval. The behavior of the derivative quotient at the interior points gives rise to the terms

$$
2 \sum_{j=1}^{K} \frac{\left[A^{\prime}(\mathbf{x}, \mathbf{h})\left(t_{j}\right)\right]^{2}}{\left|(d \varepsilon / d t)\left(t_{j}\right)\right|}
$$

Hence we consider what happens at the endpoints. By virtue of our assumptions concerning A and f, for each λ sufficiently small, there are simple zeros, $t_{0}(\lambda)$ and $t_{K+1}(\lambda)$ of $\varepsilon(\lambda, t)=A(\mathbf{x}+\lambda \mathbf{h})(t)-f(t)$ which are continuously differentiable functions of λ and are, for sufficiently small λ, as close to a and b, respectively, as we desire. Moreover, neither $\varepsilon(\lambda, t)$ nor $\varepsilon(t)=\varepsilon(0, t)$ has any zeros on the intervals connecting a to $t_{0}(\lambda)$ or b to $t_{K^{+1}}(\lambda)$. Here we have used the Implicit Function Theorem applied to $\varepsilon(\lambda, t)$ and the fact that f is continuously differentiable on an open interval containing $[a, b]$. In fact, by Taylor's Theorem, we have

$$
t_{0}(\lambda)=a+\left.\frac{d t_{0}}{d \lambda}\right|_{\lambda=0} \lambda+o(\lambda)
$$

and

$$
t_{K+1}(\lambda)=a+\left.\frac{d t_{K+1}}{d \lambda}\right|_{\lambda=0} \lambda+o(\lambda)
$$

for each λ sufficiently small. Application of the Implicit Function Theorem to $\varepsilon(\lambda, t)$ shows also that

$$
\left.\frac{d t_{0}}{d \lambda}\right|_{\lambda=0}=\frac{-A^{\prime}(\mathbf{x}, \mathbf{h})}{(d \varepsilon / d t)(a)}
$$

and

$$
\left.\frac{d t_{K+1}}{d \lambda}\right|_{\lambda=0}=\frac{-A^{\prime}(\mathbf{x}, \mathbf{h})}{(d \varepsilon / d t)(a)} .
$$

Therefore the order relation between a and $t_{0}(\lambda)$ is completely governed by the sign of λ with a similar remark applying at the right-hand endpoint. Let us consider what happens near $t=a$. In the difference quotient above which defines $F_{+}^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})$ the term

$$
\int_{a}^{t_{10}(\lambda)} \frac{\operatorname{sgn} \varepsilon(\lambda, t)-\operatorname{sgn} \varepsilon(t)}{\lambda} A^{\prime}(\mathbf{x}, \mathbf{h})(t) d t
$$

is involved precisely when $t_{0}(\lambda)>a$, which is to say precisely, provided λ is small enough, when

$$
\frac{-A^{\prime}(\mathbf{x}, \mathbf{h})}{(d \varepsilon / d t)(a)}>0
$$

since $\lambda>0$. If this last inequality holds, then the term

$$
\lim _{\lambda \rightarrow 0^{+}} \int_{a}^{\text {tof } \lambda t} \frac{\operatorname{sgn} \varepsilon(\lambda, t)-\operatorname{sgn} \varepsilon(t)}{\lambda} A^{\prime}(\mathbf{x}, \mathbf{h})(t) d t
$$

arises in the calculation of $F_{+}^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})$; otherwise it does not. Suppose it appears. Then $t_{0}(\lambda)>a$ and $\operatorname{sgn} \varepsilon(\hat{\lambda}, t)$ and $\operatorname{sgn} \varepsilon(0, t)$ are constant on the interval $\left(a, t_{0}(\lambda)\right)$. Suppose $\varepsilon(0, t)>0$ there. Then, by the simplicity of the roots of $\varepsilon(0, t),\left.(d \varepsilon(0, t) / d t)\right|_{t=a}>0$. Hence, using the second assumption concerning the parameter map A, for λ near enough to $0,\left.(d \varepsilon(\lambda, t) / d t)\right|_{t=t_{1}(\lambda)}$ >0 also. Hence

$$
\operatorname{sgn} \varepsilon(\lambda, t)-\operatorname{sgn} \varepsilon(0, t)=-2
$$

on ($a, t_{0}(\lambda)$. Similarly if $\varepsilon(0, t)<0$,

$$
\operatorname{sgn} \varepsilon(\lambda, t)-\operatorname{sgn} \varepsilon(0, t)=2
$$

on $\left(a, t_{0}(\lambda)\right.$. Thus

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0^{+}} \int_{a}^{r_{10}(\lambda)} \frac{\operatorname{sgn} \varepsilon(\lambda, t)-\operatorname{sgn} \varepsilon(t)}{\lambda} A^{\prime}(\mathbf{x}, \mathbf{h})(t) d t \\
& \quad= \pm \frac{2}{\lambda} \int_{a}^{t_{0}(\lambda)} A^{\prime}(\mathbf{x}, \mathbf{h})(t) d t \\
& \quad= \pm 2 A^{\prime}(\mathbf{x}, \mathbf{h})(t) \frac{-A^{\prime}(\mathbf{x}, \mathbf{h})}{(d \varepsilon / d t)(a)}
\end{aligned}
$$

Noting that the sign of ± 2 is opposite that of $(d \varepsilon / d t)_{t=a}$, we see that this is just

$$
2 \frac{\left[A^{\prime}(\mathbf{x}, \mathbf{h})\left(t_{j}\right)\right]^{2}}{|(d \varepsilon / d t)(a)|}
$$

If, on the other hand, the opposite inequality prevails in (\dagger), this same term arises not in $F_{+}^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})$ but rather in $F_{-}^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})$ by the linearity of these expressions in h. Similar arguments hold at the righthand endpoint.

Lemma 2. Suppose $f \in C^{1}[a, b]$ and A satisfies the hypotheses of Lemma 1. Assume further that A is a local homeomorphism in a neighborhood of \mathbf{x}_{0}, that. with F and ε as in Lemma 1 ,

$$
F^{\prime}\left(\mathbf{x}_{0}, \mathbf{h}\right)=\int_{a}^{h} \operatorname{sgn} \varepsilon(t) A^{\prime}\left(\mathbf{x}_{0}, \mathbf{h}\right)(t) d t=0
$$

for all $\mathbf{h} \in \mathbb{R}^{n+m+1}$ and that there exists an $\eta>0$ so that

$$
F_{+}^{\prime \prime}\left(\mathbf{x}_{0}, \mathbf{h}, \mathbf{h}\right)>\eta \quad \text { and } \quad F_{-}^{\prime \prime}\left(\mathbf{x}_{0}, \mathbf{h}, \mathbf{h}\right)>\eta
$$

for all $\mathbf{h} \in \mathbb{R}^{n+m+1}$ so that $\|\mathbf{h}\|=1$. Then $A\left(\mathbf{x}_{0}\right)$ is a local best approximation to f from $A(S)$ in L^{1} norm.

Proof. The hypotheses concerning the sign of the one-sided derivatives $F_{+}^{\prime \prime}\left(\mathbf{x}_{0}, \mathbf{h}, \mathbf{h}\right)$ and $F^{\prime \prime}\left(\mathbf{x}_{0}, \mathbf{h}, \mathbf{h}\right)$ together with the compactness of the unit sphere imply that there exists a $\lambda_{0}>0$ so that, for all $\lambda<\lambda_{0}$ and all $\|\boldsymbol{h}\|=1$,

$$
F\left(\mathbf{x}_{0}+\lambda \mathbf{h}\right)-F\left(\mathbf{x}_{0}\right)>0 .
$$

This in conjunction with the fact that A is a local homeomorphism near \mathbf{x}_{0} yields the result.

We are now in a position to state and prove the following theorem.
Theorem 1. Suppose $r_{0} \in \mathcal{A}[a, b]$. Then there exists a function $f \in \mathscr{A}[a, b], f \notin R_{m}^{n}[a, b]$, so that f has r_{0} as its best approximation from $R_{m}^{n}[a, b]$ in $L^{1}[a, b]$ and f interpolates r_{0} at a and b.

Proof. Let $a<t_{1}<t_{2}<\cdots<t_{n+m+1}, b$ be the L^{1} canonical points of the $n+m+1$-dimensional Haar space tangent to $R_{m}^{n}[a, b]$ at r_{0}. Let $w(t)=\prod_{j=0}^{n+m+2} t-t_{j}$, where $t_{0}=a$ and $t_{n+m+2}=b$. Taking

$$
f=r_{0}+w \quad \text { and } \quad f_{\lambda}=\lambda f+(1-\lambda) r_{0}
$$

r_{0} is a critical point to each of the functions f_{λ} from $R_{m}^{n}[a, b]$ for $\lambda \in(0,1)$. Note $f_{i} \in \mathscr{A}[a, b]$. If we let

$$
F_{\lambda}(\mathbf{x})=\int_{a}^{h}\left|f_{\lambda}(t)-A(\mathbf{x})(t)\right|, d t
$$

then, applying Lemma 1 , we find that

$$
\begin{aligned}
F_{i,+}^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})= & \frac{2}{\lambda} \sum_{j=1}^{n+m+1} \frac{\left[A^{\prime}(\mathbf{x}, \mathbf{h})\left(t_{j}\right)\right]^{2}}{\left|(d \varepsilon / d t)\left(t_{j}\right)\right|}+\int_{a}^{b} \operatorname{sgn} \varepsilon(t) A^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})(t), d t \\
& + \text { a nonnegative term }
\end{aligned}
$$

and

$$
\begin{aligned}
F_{\lambda,-}^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})= & \frac{2^{n}}{\lambda} \sum_{j=1}^{n+m+1} \frac{\left[A^{\prime}(\mathbf{x}, \mathbf{h})\left(t_{j}\right)\right]^{2}}{\left|(d \varepsilon / d t)\left(t_{j}\right)\right|}+\int_{u}^{b} \operatorname{sgns}(t) A^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})(t), d t \\
& + \text { a nonnegative term. }
\end{aligned}
$$

where $h \in \mathbb{R}^{n+m+1}, \varepsilon(t)=f(t)-r_{0}(t)$, and the nonnegative terms are as discussed in Lemma 1. Using the compactness of the unit sphere in \mathbb{R}^{n+m+1} and the continuity of

$$
\mathbf{h} \mapsto A^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})
$$

we may select $\eta>0$ so that

$$
F_{i .+}^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})>\eta \quad \text { and } \quad F_{i,-}^{\prime \prime}(\mathbf{x}, \mathbf{h}, \mathbf{h})>\eta
$$

for all suitably small λ. Applying Lemma 2 , we see that f_{λ} eventually has r_{0} as a local best from $R_{m}^{n}[a, b]$. Moving further down the ray connecting f to r_{0} we obtain f_{λ} for which r_{0} is a global best approximation from $R_{m}^{\prime \prime}[a, b]$.

To extend this result to the case of defect one functions will require the following lemma.

Lemma 3. Suppose $r_{0} \in R_{m}^{\prime \prime}[a, b]$ and $\operatorname{def}\left(r_{0}\right)=1$. Then, given any $\gamma \in[a, b]$, there is a neighborhood U of r_{0} in $L^{1}[a, b] \cap R_{m}^{n}[a, b]$ and a real number $d>0$, so that if $r \in U$ the poles of r are further than d from (α, β).

Proof. Suppose the lemma fails. Then there is a sequence, $r_{j}=p_{j} / q_{i}$, which has poles at β_{j} so that $\beta_{j} \rightarrow \gamma \in(-1,1)$ and $r_{j} \rightarrow r_{0}$. Since γ is interior to $[-1,1]$ and r_{j} cannot have any poles on the interval $[-1,1]$, we may assume that each β_{j} is a non-real complex number. Since q_{j} has real coefficients and no zeros on $[-1,1]$ it must be the case that both β_{j} and $\bar{\beta}_{j}$ are roots of q_{j} hence that $q_{j}(t)=\bar{q}_{j}(t)\left(t^{2}-\left|\beta_{j}\right|^{2}\right)$, where $\bar{q}_{j}(t)$ is a polynomial with real coefficients of degree at most $m-2$. Since r_{j} converges to r_{0}, it is bounded in norm. Hence we must be able to find distinct complex roots α_{j} and $\overline{\alpha_{j}}$ for p_{j} so that $\alpha_{j} \rightarrow \gamma$. So we may write $p_{j}(t)=$ $\tilde{p}_{j}(t)\left(t^{2}-\left|x_{j}\right|^{2}\right)$. where $\tilde{p}_{j}(t)$ is a real polynomial of degree at most $n-2$. Normalizing q_{j} so that $\left\|q_{j}\right\|_{r}=1$ and passing if necessary to a subsequence, we may assume that p_{j} and q_{j} converge uniformly to p_{0} and q_{0}, respectively, where $r_{0}=p_{0} / q_{0}([2])$. Hence we have

$$
\begin{aligned}
\frac{p_{0}(t)}{q_{0}(t)} & =\frac{p^{*}(t)\left(t^{2}-\gamma^{2}\right)}{q^{*}(t)\left(t^{2}-\gamma^{2}\right)} \\
& =\frac{p^{*}(t)}{q^{*}(t)} \in R_{m-2}^{n-2}[-1,1]
\end{aligned}
$$

where $\tilde{p}_{j}(t) \rightarrow p^{*}(t)$ and $\tilde{q}_{j}(t) \rightarrow q^{*}(t)$ uniformly on $[-1,1]$. This contradicts our assumption concerning the defect of r_{0} and so no such sequence of poles may exist.

With this lemma available we may now establish the following result:
Theorem 2. Let $r_{0} \in R_{m-1}^{n-1}[-1,1]$. Then there is a function $f \in C[-1,1] \backslash$ $R_{m}^{n}[-1,1]$ so that r_{0} is a best L^{1} approximation to f from $R_{m}^{n}[-1,1]$.

Proof. For each $\delta \in(0,1)$ by Theorem 2.1 we may find a function \tilde{f}_{δ} so that r_{0} is a best L^{1} approximation of \tilde{f}_{δ} from $R_{m-1}^{n-1}[-\delta, \delta]$ and so that $\tilde{f}_{\delta}(-\delta)=r_{0}(-\delta)$ and $\tilde{f}_{\delta}(\delta)=r_{0}(\delta)$. Define f_{δ} on $[-1,1]$ by

$$
f_{s}(t)= \begin{cases}\tilde{f}_{s}(t), & \text { if } t \in[-\delta, \delta] ; \\ r_{0}(t), & \text { if } t \notin[-\delta, \delta] .\end{cases}
$$

Then f_{δ} is a continuous function on $[-1,1]$ and, for each δ, r_{0} is a best L^{1} approximation to f_{δ} from $R_{m-1}^{n-1}[-1,1]$ since r_{0} is best on $[-\delta, \delta]$ and the two agree on the rest of $[-1,1]$. Suppose now that for no $\delta \in(0,1)$ is r_{0} a best L^{1} approximation to f_{δ} from $R_{m}^{n}[-1,1]$. Denote by f_{k} the function $f_{1 / k}$ corresponding to the interval $[-1 / k, 1 / k]$. We observe that in the construction of f_{k} we may take the uniform norm of $f_{k}-r_{0}$ to be bounded so that $\left\|f_{k}-r_{0}\right\|_{1,[-1,1]} \rightarrow 0$ as $k \rightarrow \infty$. Hence, if r_{0} is not best to any of the f_{k}, there exists a sequence $r_{k} \in \mathcal{V}_{m}^{n}[a, b]$ converging in $L^{1}[a, b]$ to r_{0} so that

$$
\int_{-1}^{1}\left|f_{k}(t)-r_{k}(t)\right| d t<\int_{-1}^{1}\left|f_{k}(t)-r_{0}(t)\right| d t \quad \text { for each } k
$$

which is equivalent to

$$
\begin{aligned}
& \int_{-1}^{1}\left|r_{k}(t)-r_{0}(t)\right| d t+\int_{-1 / k}^{1 / k}\left|f_{k}(t)-r_{k}(t)\right| d t \\
& \quad<\int_{-1 / k}^{1 / k}\left|r_{0}(t)-f_{k}(t)\right| d t+\int_{-1 ; k}^{1 / k}\left|r_{0}(t)-r_{k}(t)\right| d t
\end{aligned}
$$

or

$$
\begin{aligned}
& \int_{-1}^{1}\left|r_{k}(t)-r_{0}(t)\right| d t \\
& \quad<\int_{-1 / k}^{1 / k}\left(\left|r_{0}(t)-f_{k}(t)\right|-\left|f_{k}(t)-r_{k}(t)\right|\right)+\int_{-1 / k}^{1 / k}\left|r_{0}(t)-r_{k}(t)\right| d t .
\end{aligned}
$$

This in turn implies that

$$
\int_{-1}^{1}\left|r_{k}(t)-r_{0}(t)\right| d t<2 \int_{-1 / k}^{1 / k}\left|r_{0}(t)-r_{k}(t)\right| d t
$$

by the triangle inequality, hence that

$$
\frac{1}{2}<\int_{-1 / k}^{1 / k} \frac{\left|r_{0}(t)-r_{k}(t)\right|}{\left\|r_{k}-r_{0}\right\|_{1}} d t
$$

where the L^{1} norm refers to the interval $[-1,1]$.
Now let

$$
\sigma_{k}=\frac{\left|r_{0}(t)-r_{k}(t)\right|}{\left\|r_{k}-r_{0}\right\|_{1}}
$$

We observe that the poles of the σ_{k} are precisely those of the r_{k} together with those of r_{0}. All of these together are bounded below in distance from any interior point of $[-1,1]$, in particular from 0 , by Lemma 3. Indeed, by a minor extension, they are bounded away from any interval $[\alpha, \beta]$, which is interior to $[-1,1]$ from which it follows that we may extract a subsequence of σ_{k}, which converges uniformly to a rational function σ^{*} on any such interval, in particular on $[-1 / 2,1 / 2]$, which eventually contains $[-1 / k, 1 / k]$. Denoting this subsequence σ_{j} we then have

$$
\frac{2}{k_{j}}\left|\sigma_{j}\left(\xi_{j}\right)\right|>\frac{1}{2}
$$

for each $j=1,2, \ldots$, where $\xi_{j} \in\left[-\left(1 / k_{j}\right),\left(1 / k_{j}\right)\right]$. Since $\xi_{j} \rightarrow 0$ and $\sigma_{j} \rightarrow \sigma^{*}$ uniformly on every sufficiently small neighborhood of 0 , we must have that σ^{*} has a pole at 0 . But this is clearly impossible since any pole of σ^{*} must be a limit of poles of the σ_{j} all of which are bounded away from 0 . Hence such a sequence of r_{k} cannot exist and the proof is complete.

References

1. M. Berger, "Nonlinearity and Functional Analysis," Academic Press, New York, 1977.
2. D. Braess, "Nonlinear Approximation Theory," Springer-Verlag, Berlin/New York, 1986.
3. E. W. Cheney and A. A. Goldstein, Mean square approximation by generalized rational functions, Math. Zeitschrift 95 (1967), 232 241.
4. E. W. Cheney, "Introduction to Approximation Theory," McGraw Hill, New York, 1966.
5. P. J. Davis, "Interpolation and Approximation," Blaisdell, New York, 1963.
6. C. B. Denham, Degeneracy in mean rational approximation, J. Approx. Theory 4 (1971), 225-229.
7. C. B. Dlnham, Existence of best mean rational approximations. J. Approx. Theory 4 (1971). 269-273.
8. R. C. Gayle, On existence and unicity in nonlinear L^{\prime} approximation, a dissertation, University of Oregon, August 1993.
9. B. R. Kripke ani) T. J. Rivlin, Approximation in the metric of $L(X, \mu)$, Trans. Amer Math. Soc. 119 (1965), 101-122
10. J. M. Wolfe, Nonlinear L^{\dagger} approximation of smooth functions, J. Approx. Theory 17 (1976), 166-176.
